Approaching the diversity and density dilemma of the lebensspuren-tracemaker tandem: a study case from abyssal Northwest Pacific
DOI | 10.5194/bg-2023-81 |
---|---|
Aasta | 2023 |
Ajakiri | Historical Biology |
Köide | 35 |
Number | 7 |
Leheküljed | 1112-1123 |
Tüüp | artikkel ajakirjas |
Keel | inglise |
Id | 47371 |
Abstrakt
In the deep-sea, the interaction between benthic fauna and substrate mainly occurs through bioturbational processes which can be preserved as traces (i.e., lebensspuren). Lebensspuren are common features of deep seafloor landscapes and usually more abundant than the organism that produce them (i.e., tracemakers), rendering them promising proxies to infer biodiversity. The density and diversity relationships between lebensspuren and benthic fauna are to the present day unclear and contradicting hypotheses have been proposed suggesting negative, positive, or even null correlations. To test these hypotheses, in this study lebensspuren, tracemakers (specific epibenthic fauna that produce these traces), degrading fauna (benthic fauna that can erase lebensspuren), and fauna in general were characterized taxonomically at eight deep-sea stations in the Kuril Kamchatka Trench area. No general correlation (over-all study area) could be observed between diversities of lebensspuren, tracemakers, degrading fauna and fauna. However, a diversity correlation was observed between specific stations, showing both negative and positive correlations depending on: 1) the number of unknown1 tracemakers (especially significant for dwelling lebensspuren); and 2) the lebensspuren with multiple origins; and 3) tracemakers that can produce different lebensspuren. Lebensspuren and faunal density were not correlated. However, lebensspuren density was either positively or negatively correlated with tracemaker densities, depending on the lebensspuren morphotypes. A positive correlation was observed for resting lebensspuren (e.g., ophiuroid impressions, Actinaria circular impressions), while negative correlations were observed for locomotion-feeding lebensspuren (e.g., echinoid trails). In conclusion, lebensspuren diversity may be a good proxy for tracemaker biodiversity when the lebensspuren-tracemaker tandem can be reliable characterized; and lebensspuren-density correlations vary depending the specific lebensspuren residence time, tracemaker density and associated behaviour (rate of movement), but on a global scale abiotic and other biotic factors may also play an important role.