Tagasi otsingusse
Hofmann et al., 2023

An arrowhead made of meteoritic iron from the late Bronze Age settlement of Mörigen, Switzerland and its possible source

Hofmann, B. A., Schreyer, S. B., Biswas, S., Gerchow, L., Wiebe, D., Schumann, M., Lindemann, S., García, D. R., Lanari, P., Gfeller, F., Vigo, C., Das, D., Hotz, F., von Schoeler, K., Ninomiya, K., Niikura, M., Ritjoho, N., Amato, A.
DOI
DOI10.1016/j.jas.2023.105827
Aasta2023
AjakiriJournal of Archaeological Science
Köide157
Number105827
Leheküljed1-10
Tüüpartikkel ajakirjas
Keelinglise
Id47528

Abstrakt

A search for artefacts made of meteoritic iron has been performed in archaeological collections in the greater area of the Lake of Biel, Switzerland. A single object made of meteoritic iron has been identified, an arrowhead with a mass of 2.9 g found in the 19th Century in the late Bronze Age (900–800 BCE) lake dwelling of Mörigen, Switzerland. The meteoritic origin is definitely proven by combining methods extended and newly applied to an archaeological artefact. Elemental composition (7.10–8.28 wt% Ni, 0.58–0.86 wt% Co, ∼300 ppm Ge), primary mineralogy consisting of the associated Ni-poor and Ni-rich iron phases kamacite (6.7 wt% Ni) and taenite (33.3 wt% Ni), and the presence of cosmogenic 26Al (1.7−0.4+0.5 dpm/kg). The Ni-rich composition below the oxidized crust and the marked difference to meteorites from the nearby (4–8 km) Twannberg iron meteorite strewn field is confirmed by muon induced X-ray emission spectrometry (8.28 wt% Ni). The Ni-Ge-concentrations are consistent with IAB iron meteorites, but not with the Twannberg meteorite (4.5 wt% Ni, 49 ppm Ge). The measured activity of 26Al indicates derivation from an iron meteorite with a large (2 t minimum) pre-atmospheric mass. The flat arrowhead shows a laminated texture most likely representing a deformed Widmanstätten pattern, grinding marks on the surface and remnants of wood-tar. Among just three large European IAB iron meteorites with fitting chemical composition, the Kaalijarv meteorite (Estonia) is the most likely source because this large crater-forming fall event happened at ∼1500 years BC during the Bronze Age and produced many small fragments. The discovery and subsequent transport/trade of such small iron fragments appears much more likely than in case of buried large meteorite masses. Additional artefacts of the same origin may be present in archaeological collections.

Viimati muudetud: 15.11.2024
KIKNATARCSARVTÜ Loodusmuuseumi geokogudEesti Loodusmuuseumi geoloogia osakond
Leheküljel leiduvad materjalid on enamasti kasutamiseks CC BY-SA litsensi alusel, kui pole teisiti määratud.
Portaal on osaks teadustaristust ning infosüsteemist SARV, majutab TalTech.
Open Book ikooni autor Icons8.