Tagasi otsingusse
Schoenemann, 2025

Trilobite Eyes and Their Evolution

Schoenemann, B.
DOI
DOI10.3390/arthropoda3010003
Aasta2025
AjakiriArthropoda
Köide3
Number1
Leheküljed3
Tüüpartikkel ajakirjas
OpenAccess
LitsentsCC BY 4.0
Keelinglise
Id50840

Abstrakt

Trilobites, as typical euarthropods, possess compound eyes. In 1901, Lindström was the first to describe them in detail; on the one hand, we reconsider his descriptions of the different modes of trilobite eyes; on the other hand, we expand this by compiling the observations that have been possible in recent years. There are two, perhaps three kinds of trilobite compound eyes. The first are the primordial holochroal eyes, which are actually apposition compound eyes, similar to those of many modern diurnal crustaceans and insects. The abathochroal eyes, often referred to as the second form, are probably a subtype of the holochroal eyes. Consequently, the second is the schizochroal eye of phacopid trilobites, which are hyper-compound eyes composed of numerous small compound eyes below each of the big lenses, which appear from outside as one big lateral eye each. Thirdly, one may call the maculae light-sensitive organs, but this is still uncertain. Comparing what are probably the oldest trilobite eyes described so far with other forms, it is possible to conclude that the sensory apparatus is much older than the fossil record of trilobite eyes and probably developed in Precambrian times. The refractive apparatus, however, was developed later and separately within the systematic groups. This explains why, for example, the mandibulates have a lens and a crystalline cone. Still, the chelicerate xiphosurans, such as horseshoe crabs or eurypterids, possess a lens cylinder with an index gradient but no crystalline cone. Furthermore, this can explain why the calcite character of trilobites is unique in the arthropod kingdom. An important discovery is the probably epidermal, lens-building cells encompassing a prospective lens of Schmidtiellus reetae Bergström 1973 from the early Lower Cambrian of Estonia. We reconsider the morphology of hypostome maculae and interpret them as a potential phylogenetic relict and a potential predecessor of all arthropod ommatidial compound eyes. It will be of great relevance for future research to understand the evolution of compound eyes and vision because we witness the emergence of the first lenses in the trilobite, if not the arthropod kingdom.

Viimati muudetud: 18.2.2025
KIKNATARCSARVTÜ Loodusmuuseumi geokogudEesti Loodusmuuseumi geoloogia osakond
Leheküljel leiduvad materjalid on enamasti kasutamiseks CC BY-SA litsensi alusel, kui pole teisiti määratud.
Portaal on osaks teadustaristust ning infosüsteemist SARV, majutab TalTech.
Open Book ikooni autor Icons8.