Tagasi otsingusse
Kröger et al., 2017b

The reengineering of reef habitants during the Great Ordovician Biodiversification Event

Kröger, B., Desrochers, A., Ernst, A.
DOI
DOI10.2110/palo.2017.017
Aasta2017
AjakiriPalaios
Köide32
Number9
Leheküljed584-599
Tüüpartikkel ajakirjas
Keelinglise
Id6517

Abstrakt

Bryozoans, stromatoporoid sponges, and tabulate corals, all colonial metazoans with lamellar, encrusting growth forms, developed and simultaneously diversified during the Great Ordovician Biodiversification Event (GOBE). After revisiting some classic Lower, Middle, and Upper Ordovician reef localities in Laurentia (Franklin Mountains, west Texas, Mingan Islands in eastern Canada, and Champlain Valley in northeastern United States) and Baltica (northern Estonia) and reviewing the literature, we demonstrate that during the Ordovician a newly emerging consortium of sheet-like bryozoans, stromatoporoid sponges, and tabulate corals locally bound together by microbes, automicrite, and cement and solidly rooted in sediment became the dominant reef-builders globally. The diversification of these sheet-like metazoans (SLM), however, clearly lagged behind the first appearance of their respective skeletal ancestors. Their habitat expansion can be exemplified as a case of simultaneous ecological fitting and ecosystem engineering when the independently evolved shared traits were simultaneously co-opted and became advantageous under globally different environmental conditions. This interaction led to the evolutionary diversification of colonial metazoans during the GOBE and to the expansion of novel reef habitats in previously soft-surface settings; a transformation that forever changed marine reefal ecosystems.

Viimati muudetud: 19.5.2021
KIKNATARCSARVTÜ Loodusmuuseumi geokogudEesti Loodusmuuseumi geoloogia osakond
Leheküljel leiduvad materjalid on enamasti kasutamiseks CC BY-SA litsensi alusel, kui pole teisiti määratud.
Portaal on osaks teadustaristust ning infosüsteemist SARV, majutab TalTech.
Open Book ikooni autor Icons8.