Convergence and contingency in the evolution of a specialized mode of life: multiple origins and high disparity of rock-boring bivalves
DOI | 10.1098/rspb.2022.1907 |
---|---|
Aasta | 2023 |
Ajakiri | Proceedings of the Royal Society B |
Köide | 290 |
Number | 1992 |
Tüüp | artikkel ajakirjas |
Keel | inglise |
Id | 48250 |
Abstrakt
Evolutionary adaptation to novel, specialized modes of life is often associated with a close mapping of form to the new function, resulting in narrow morphological disparity. For bivalve molluscs, endolithy (rock-boring) has biomechanical requirements thought to diverge strongly from those of ancestral functions. However, endolithy in bivalves has originated at least eight times. Three-dimensional morphometric data representing 75 species from approximately 94% of extant endolithic genera and families, along with 310 non-endolithic species in those families, show that endolithy is evolutionarily accessible from many different morphological starting points. Although some endoliths appear to converge on certain shell morphologies, the range of endolith shell form is as broad as that belonging to any other bivalve substrate use. Nevertheless, endolithy is a taxon-poor function in Bivalvia today. This limited richness does not derive from origination within source clades having significantly low origination or high extinction rates, and today's endoliths are not confined to low-diversity biogeographic regions. Instead, endolithy may be limited by habitat availability. Both determinism (as reflected by convergence among distantly related taxa) and contingency (as reflected by the endoliths that remain close to the disparate morphologies of their source clades) underlie the occupation of endolith morphospace.