Back to search
Jenkins, 1987

The Ordovician graptoloid Didymograptus murchisoni in South Wales and its use in three-dimensional absolute strain analysis

Jenkins, C. J.
DOI
DOI10.1017/S0263593300011019
Year1987
JournalTransactions of the Royal Society of Edinburgh Earth Sciences
Volume78
Number105-114
Pages105-114
Typearticle in journal
LanguageEnglish
Id3327

Abstract

The dimensional statistics and proximal development characters of the Llanvirnian pendent didymograptid D. murchisoni are defined using the type material from near Builth Wells (Powys) and other collections from Abereiddi Bay (Dyfed). Population variability (as expressed by variation coefficients) in the undeformed faunas amounts to about 10% for the sicula lengths and thecal spacings, but is over 20% (up to 200%) for stipe lengths and divergences. Characters with low variability have greater species-diagnostic value. Proximal development in the species involves a dicalycal th 11 and a low origin for that theca from the sicula. The taxa Didymograptus amplus, D. nanus, D. geminus, D. geminus latus and D. acutus are varieties within populations of D. murchisoni and are therefore junior synonyms.

The resulting rationalised taxonomy allows advances to be made in the use of the species in stratigraphy and tectonics. For example, an occurrence of undeformed (pyritised) D. murchisoni in full relief at Abereiddi in the same beds as flattened and deformed faunas, allows a calculation of the absolute three-dimensional strains to be made for the slates there. The strains are strongly flattening (K < 0 · 3) and involve volume changes of about −56%. The high dilatation values imply that stylolite and grain-boundary pressure solution operated during the deformations to take the changes in volume beyond what is possible with simple compaction (i.e. porosity reduction).

Last change: 11.1.2020
KIKNATARCSARVTÜ Loodusmuuseumi geokogudEesti Loodusmuuseumi geoloogia osakond
All materials in the portal are for free usage according to CC BY-SA , unless indiated otherwise.
Portal is part of natianal research infrastructure and geoscience data platform SARV, hosted by TalTech.
Open Book icon by Icons8.