Back to search
Schulz et al., 2021

The Furongian to Lower Ordovician Alum Shale Formation in conventional and unconventional petroleum systems in the Baltic Basin – A review

Schulz, H., Yang, S., Schovsbo, N. H., Rybacki, E., Ghanizadeh, A., Bernard, S., Mahlstedt, N., Krüger, M., Amann-Hildebrandt, A., Krooss, B. M., Meier, T., Reinicke, A.
JournalEarth-Science Reviews
Typearticle in journal


The organic carbon- and uranium-rich, marine Alum Shale Formation in northwestern Europe (Middle Cambrian (Miaolingian) to Early Ordovician) was deposited in the Baltic Basin and surrounding areas. It is a proven source rock for conventional oil either in sandstones of Cambrian age or Ordovician and Silurian carbonates, and also contains a potential for shale oil and for biogenic or thermogenic shale gas. Despite the absence of higher land plant precursors, the primary Type II kerogen has an abnormally strong aromatic character at low thermal maturities due to α-particle bombardment by the elevated uranium content. The characteristic aromatic kerogen structure results in dead carbon formation and enhances hydrocarbon retention. As a consequence, effective petroleum expulsion is limited during maturation. The petroleum generation properties of the Alum Shale Formation changed over geological time due to the accumulated uranium irradiation. For thermally immature samples, high uranium content is positively correlated with high gas-oil ratios and the aromaticities of both the free hydrocarbons residing in the rock and the pyrolysis products from its kerogen. Such characteristics indicate that irradiation has had a strong influence on the overall organic matter composition and hence on the petroleum potential. At high uranium content, macromolecules are less alkylated than their less irradiated counterparts, and oxygen containing-compounds are enriched. However, the kerogen structure was less altered during catagenesis (420–340 Ma bp) than at present, and thus calibration is needed to predict petroleum generation in time and space. In southern central Sweden biogenic methane in the Alum Shale Formation was formed during oil degradation after the Quaternary glaciation following bitumen impregnation generated from local magmatic Carboniferous – Permian intrusions. Consequently, the Alum Shale Formation includes a mixed shale oil/biogenic gas play that resembles the formation of biogenic methane in the Antrim Shale (Michigan Basin, United States). In the Alum Shale Formation, low salinity pore water created a subsurface aqueous environment, which was favourable for microbes that have the potential to form biogenic methane. The ability to generate biogenic methane from samples of the Alum Shale Formation in incubation experiments still exists today. 

Last change: 28.7.2021
KIKNATARCSARVTÜ Loodusmuuseumi geokogudEesti Loodusmuuseumi geoloogia osakond
All materials in the portal are for free usage according to CC BY-SA , unless indiated otherwise.
Portal is part of natianal research infrastructure and geoscience data platform SARV, hosted by TalTech.
Open Book icon by Icons8.