Back to search
Bourillot et al., 2009

The role of topography and erosion in the development and architecture of shallow-water coral bioherms (Tortonian–Messinian, Cabo de Gata, SE Spain)

Bourillot, R., Vennin, E., Kolodka, C., Rouchy, J., Caruso, A., Durlet, C., Chaix, C., Rommevaux, V.
DOI
DOI10.1016/j.palaeo.2009.07.015
Year2009
JournalPalaeogeography, Palaeoclimatology, Palaeoecology
Volume281
Number1-2
Pages92-114
Typearticle in journal
LanguageEnglish
Id51044

Abstract

During the Miocene, Mediterranean shallow-water carbonates were rich in scleractinian corals, which thrive in various depositional settings. A Tortonian–Messinian bioherm belt developing in a heterozoan-dominated ramp was investigated along a 1.2 km continuous transect located in the Cabo de Gata region. The interval studied displays four depositional environments from mid-to-inner ramp, dominated by swell waves and storm energy, deposited as a single, large-scale depositional sequence during a 3rd to 4th order transgressive–regressive cycle. The bioherms grew in three phases, and were essentially composed of in-place primary frameworks. Three coral genera were the main framebuilders (Porites, Tarbellastrea and rare Siderastrea), associated with melobesioid and mastophoroid red algae and bryozoans as secondary framebuilders. The corals display five morphotypes, from a fast-growing branched type to slow-growing domal to plate morphologies, with an uncommon form of mesh Porites as the dominant morphotype. Changes in coral morphotype and composition of micro-encrusters communities reveal changes in hydrodynamics, detrital influx and perhaps nutrient levels. Bioherms architecture was driven by sea level, palaeotopography and erosion. The coral framework was affected during its development by erosion surfaces metres to tens of metres deep and hundreds of metres wide. Unexpectedly, these surfaces are better developed on the inner edges of the bioherms. This could indicate the circulation of strong bottom currents between the volcanic palaeohighs and the synoptic relief created by the buildups. Finally, a major sub-aerial erosional episode associated with increasing detrital influxes, ended bioherm development, thus allowing the colonization of the dead coral substratum by red algae.

Last change: 7.3.2025
KIKNATARCSARVTÜ Loodusmuuseumi geokogudEesti Loodusmuuseumi geoloogia osakond
All materials in the portal are for free usage according to CC BY-SA , unless indiated otherwise.
Portal is part of natianal research infrastructure and geoscience data platform SARV, hosted by TalTech.
Open Book icon by Icons8.