Back to search
Dorgan, 2015b

The biomechanics of burrowing and boring

Dorgan, K. M.
DOI
DOI10.1242/jeb.086983 Abstract
Year2015
JournalJournal of Experimental Biology
Volume218
Number2
Pages176-183
Typearticle in journal
LanguageEnglish
Id48229

Abstract

Burrowers and borers are ecosystem engineers that alter their physical environments through bioturbation, bioirrigation and bioerosion. The mechanisms of moving through solid substrata by burrowing or boring depend on the mechanical properties of the medium and the size and morphology of the organism. For burrowing animals, mud differs mechanically from sand; in mud, sediment grains are suspended in an organic matrix that fails by fracture. Macrofauna extend burrows through this elastic mud by fracture. Sand is granular and non-cohesive, enabling grains to more easily move relative to each other, and macrofaunal burrowers use fluidization or plastic rearrangement of grains. In both sand and mud, peristaltic movements apply normal forces and reduce shear. Excavation and localized grain compaction are mechanisms that plastically deform sediments and are effective in both mud and sand, with bulk excavation being used by larger organisms and localized compaction by smaller organisms. Mechanical boring of hard substrata is an extreme form of excavation in which no compaction of burrow walls occurs and grains are abraded with rigid, hard structures. Chemical boring involves secretion to dissolve or soften generally carbonate substrata. Despite substantial differences in the mechanics of the media, similar burrowing behaviors are effective in mud and sand.

Last change: 30.11.2023
KIKNATARCSARVTÜ Loodusmuuseumi geokogudEesti Loodusmuuseumi geoloogia osakond
All materials in the portal are for free usage according to CC BY-SA , unless indiated otherwise.
Portal is part of natianal research infrastructure and geoscience data platform SARV, hosted by TalTech.
Open Book icon by Icons8.