Back to search
Cribb et al., 2023

Ediacaran–Cambrian bioturbation did not extensively oxygenate sediments in shallow marine ecosystems

Cribb, A. T., van de Velde, S. J., Berelson, W. M., Bottjer, D. J., Corsetti, F. A.
DOI
DOI10.1111/gbi.12550
Year2023
JournalGeobiology
Volume21
Number4
Pages435-453
Typearticle in journal
LanguageEnglish
Id47003

Abstract

The radiation of bioturbation during the Ediacaran-Cambrian transition has long been hypothesized to have oxygenated sediments, triggering an expansion of the habitable benthic zone and promoting increased infaunal tiering in early Paleozoic benthic communities. However, the effects of bioturbation on sediment oxygen are underexplored with respect to the importance of biomixing and bioirrigation, two bioturbation processes which can have opposite effects on sediment redox chemistry. We categorized trace fossils from the Ediacaran and Terreneuvian as biomixing or bioirrigation fossils and integrated sedimentological proxies for bioturbation intensity with biogeochemical modeling to simulate oxygen penetration depths through the Ediacaran-Cambrian transition. Ultimately, we find that despite dramatic increases in ichnodiversity in the Terreneuvian, biomixing remains the dominant bioturbation behavior, and in contrast to traditional assumptions, Ediacaran-Cambrian bioturbation was unlikely to have resulted in extensive oxygenation of shallow marine sediments globally.

Last change: 13.11.2023
KIKNATARCSARVTÜ Loodusmuuseumi geokogudEesti Loodusmuuseumi geoloogia osakond
All materials in the portal are for free usage according to CC BY-SA , unless indiated otherwise.
Portal is part of natianal research infrastructure and geoscience data platform SARV, hosted by TalTech.
Open Book icon by Icons8.